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Fig. 2. Differences in root distribution between wild- and mutant-type plants and proportion of 
root distribution by root growth angle at 35 days after sowing. Root growth angle regions 
are 0–30° (blue shaded), 30-60° (red shaded) and 60–90° (green shaded).

Fig. 3. Rainfall (a) and soil water potential at 20 cm (b) depth in the AWD paddy field in 2015–2016.  
W and M indicate heading time of WAB56-104 and T6-16 mutant respectively, under AWD condi-
tions; H indicate harvesting time.
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the CWL practice (Table 1; Fig. 4c). Spikelet fertility of 
mutant-type F2 plants ranged from 2.1 to 81.1% (a mean of 
36%) under the AWD practice (Table 1; Fig. 4d) compared 
to 1.3 to 90.6% (a mean of 40.4%) under CWL practice 
(Table 1; Fig. 4d). WAB56-104 maintained 96.3% of its 
spikelet fertility under AWD practice, whereas that of the 
T6-16 mutant was greatly reduced (i.e., by 41.2%) (Table 
1). For F2 plants, the wild-type plants maintained 95.1% 
of their spikelet fertility whereas the mutant-type plants 
maintained 89.1% of their spikelet fertility (Table 1). 
However, the mean spikelet fertility in the F2 population 
was low (< 50%) under both water management practices, 
suggesting that there were other causes of F2 sterility, such 
as male sterility.

Panicle number: WAB56-104 and the T6-16 mutant 
produced almost the same number of panicles under the 
AWD practice (Table 1). Under the CWL practice, panicle 
numbers of WAB56-104 and T6-16 mutant were 13.1 and 
19.8, respectively (Table 1). Panicle numbers of wild-type 
F2 plants ranged from 7 to 35 (a mean of 20.2) under the 
AWD practice (Table 1; Fig. 4e), compared to 4 to 30 (a 
mean of 17.3) under the CWL practice (Table 1; Fig. 4f). 
Panicle numbers of mutant-type F2 plants ranged from 7 to 
30, with a mean of 16, under the AWD practice (Table 1; 
Fig. 4e), compared to 8 to 23, with a mean of 15, under the 
CWL practice (Table 1; Fig. 4f). WAB56-104 maintained 
87.8% of its panicle numbers under the AWD practice, 
whereas in the mutant the number of panicles greatly 
reduced (i.e., by 41.9%) under the same practice (Table 
1). For the F2 plants, the panicle numbers of both wild-
type and mutant-type plants were not affected by moderate 
water stress.

Spikelet numbers per panicle: Spikelet numbers per 
panicle of WAB56-104 and T6-16 mutant were 108.3 and 
36.9, respectively, under the AWD practice. Under the 
CWL practice, spikelet numbers per panicle of WAB56-

104 and T6-16 mutant were 154.2 and 78.1, respectively 
(Table 1). Spikelet numbers per panicle of wild-type F2 
plants ranged from 25.2 to 178.4, with a mean of 96.7, 
under the AWD practice (Table 1; Fig. 4g) compared to 
30.7 to 183.1, with a mean of 99.1, under the CWL prac-
tice (Table 1; Fig. 4g). Spikelet numbers per panicle of 
mutant-type F2 plants ranged from 29.5 to 134.2, with a 
mean of 73.9, under the AWD practice (Table 1; Fig. 4h) 
compared to 45.2 to 133.1, with a mean of 81.7, under the 
CWL practice (Table 1; Fig. 4h). Under the AWD practice, 
WAB56-104 maintained 70.2% of its spikelet numbers per 
panicle, whereas the T6-16 mutant had a reduced number 
(i.e., 52.8%) (Table 1). For the F2 plants, wild-type plants 
maintained 97.6% of their spikelet numbers per panicle 
whereas the mutant-type plants maintained 90.5% of their 
spikelet numbers per panicle (Table 1).

Grain weights: Grain weight of WAB56-104 and T6-16 
mutant was 29.2 g/plant and 5.1 g/plant, respectively, 
under the AWD practice. Under the CWL practice, grain 
weight of WAB56-104 and T6-16 mutant was 46.6 g/plant 
and 31 g/plant, respectively (Table 1). Grain weight of 
wild-type F2 plants ranged from 0.7 to 35.4 g/plant, with 
a mean of 16.5 g/plant, under the AWD practice (Table 1; 
Fig. 4i), compared to 0.1 to 41.2 g/plant, with a mean of 
16.4 g/plant, under the CWL practice (Table 1; Fig. 4i). 
Grain weight of mutant-type F2 plants ranged from 0.4 to 
43.5 g/plant, with a mean of 13.4 g/plant, under the AWD 
practice (Table 1; Fig. 4j), compared to 0.1 to 50.6 g/plant, 
with a mean of 14.4 g/plant, under the CWL practice 
(Table 1; Fig. 4j). Under the AWD practice, WAB56-104 
maintained 62.7% of its grain weight, whereas the grain 
weight of T6-16 mutant was greatly reduced, by 83.5% 
(Table 1). For the F2 plants, wild-type plants were not af-
fected by the AWD practice whereas mutant-type plants 
maintained 93.1% of their grain weights (Table 1) under 
the same treatment.

Table 1. Performance of agronomic characteristics in F2 population and their parental varieties grown under AWD and CWL 
conditions

Parents F2 population

WAB56-104 T6-16 mutant wild-type mutant-type
Trait CWL AWD CWL AWD CWL AWD CWL AWD
Heading time (DAT) 58.0 58.0 (0 d) ns 75.0 90.0 (15 d) *** 62.0 66.0 (4 d) ns 68.0 79.0 (11 d) *
Spikelet fertility (%) 90.4 87.1 (96.4%) ** 75.6 44.5 (58.9%) *** 40.6 38.6 (95.1%) ns 40.4 36.0 (89.1%) ns
Panicle number 13.1 11.5 (87.8%) ns 19.8 11.5 (58.1%) *** 17.3 20.2 (116.8%) ns 15.0 16.0 (106.7%) ns
Spikelet number per panicle 154.2 108.3 (70.2%) *** 78.1 36.9 (47.2%) *** 99.1 96.7 (97.6%) ns 81.7 73.9 (90.5%) ns
Grain weight (g/plant) 46.6 29.2 (62.7%) ** 31.0 5.1 (16.5%) *** 16.4 16.5 (100.6%) ns 14.4 13.4 (93.1%) ns

*P < 0.05, **P < 0.01, *** P < 0.001. ns, not significant.
Values in parenthesis indicate heading delay in days (d) or percent proportion (%) of the trait in AWD relative to that under CWL.
AWD, Alternate wetting and drying; CWL, Continously waterlogged.
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Fig. 4. Distribution of heading time (a, b), spikelet fertility (c, d), panicle number (e, f), spikelet numbers per panicle 
(g, h) and grain weights (i, j) in F2 population under AWD and CWL conditions. Closed squares indicate 
Wild-type F2 plants and stripped squares indicate mutant-type F2 plants.
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Agronomic performance of selected F2 plants
Three F2 plants that showed good agronomic perfor-

mance, in terms of delayed heading time and maintenance 
of spikelet fertility, panicle numbers, spikelet number per 
panicle, and grain weights, under water stress were identi-
fied (Table 2). Heading time delayed by 11-17 days. The 
F2 lines maintained 85% or more of their spikelet fertility. 
Their panicle numbers were not affected by moderate wa-
ter stress. Similarly, the spikelet number per panicle was 
almost maintained under moderate water stress (relative 
to continuously waterlogged conditions). The three F2 
lines also maintained 95% or higher grain weight under 
moderate water stress. However, two of the three F2 plants 
produced 2-fold higher grain weight, which was attributed 
to the production of high number of panicles under moder-
ate water stress (Table 2).

Discussion

Flowering in rice is delayed under environmental 
stresses, such as under drought stress imposed at different 
developmental stages 8, 14–21). In this study, we demonstrat-
ed the effectiveness of a mutation gene in causing delay 
in heading time of rice under moderate water stress. Past 
studies have reported the genes and pathways involved in 
the control of flowering in rice based on the photoperiodic 
response22–29). Under floral inductive period, exposure to 
drought delays flowering through reduction in transcrip-
tion of primary integrators of day length signals which 
include EARLY HEADING DATE 1 (Ehd1), HEADING 
DATE 1 (Hd1), Hd3a and RICE FLOWERING LOCUS T 1 
(RFT1) 30).

The parental cultivar of the mutant line (T6-16), Taic-
hung 65, contains non-functional alleles of both Hd1 and 
Ehd1, and flowers relatively late regardless of the natural 
photoperiod26). In this study, the variation of delayed 

heading time among the mutant-type F2 plants was very 
wide under the AWD practice (4-18 days), indicating that 
a set of genes regulating heading time was very different 
between the T6-16 mutant and WAB56-104. Therefore, 
there is potential to identify optimal lines for the mutation 
gene’s effect by selecting genotypes that have effective 
genetic basis for delayed heading time. Indeed, heading 
time of the three F2 plants was delayed by 11–17 days, and 
their spikelet fertility and grain weight were minimally or 
not affected by moderate water stress. These three plants 
have been selected as potential genotypes to be improved 
and further tested for use as a strategy for cold stress 
adaptation to reduce yield losses. Work is underway to 
evaluate the selected plants’ descendants (F3 lines) during 
the long-rains season (in June and July) when a cold spell 
is likely to be experienced.

In this study, AWD was applied from 14 DAT as recom-
mended by other researchers31). However, the first cycle 
of drying was reached late in the vegetative stage of the 
F2 plants (at 58 DAT) due to the frequent rainfall during 
the 2015/16 short-rains season in Mwea, Kenya. Water 
stress imposed at this stage resulted in heading delay by 
a mean of 11 days in mutant-type F2 plants. We speculate 
that cumulative moderate water stress from early stages 
of plant growth may result to a more prolonged delay in 
heading of rice with minimal yield losses. As such, there is 
need to evaluate the effect of cumulative water stress from 
early vegetative stage to maturity. In addition, there is need 
to assess the effect of moderate water stress imposed at 
specific growth stages on heading delay and yield per-
formance using the advanced generations produced from 
this cross of mutant-type rice. This information would be 
helpful for determining the best timing of water manage-
ment practices as a cold stress adaptation strategy based on 
weather forecasts.

Table 2. Trait mean values in selected mutant-type F2 plants

F2 plants Water treatment Heading time 
(DAT)

Spikelet fertility 
(%) Panicle number Spikelet number 

per panicle
Grain weight 

(g/plant)
1 CWL 75.0 72.1 17.0 133.1 36.8

AWD 86.0 61.2   (85%) 19.0 (112%)  134.2 (101%) 35.0 (95%)
Difference 11.0 15.0 –2.0 –1.2 1.8

2 CWL 71.0 66.9 10.0 103.4 21.0
AWD 82.0 68.5 (102%) 23.0   (230%) 98.5   (95%) 43.5 (207%)
Difference 11.0 –2.4 –13.0 4.9 –22.5

3 CWL 73.0 70.0 15.0 54.1 20.8
AWD 90.0 62.9   (90%) 30.0   (200%) 61.4  (113%) 39.9 (192%)
Difference 17.0 10.0 –15.0 –7.3 –19.1

Negative value indicate not affected by moderate water stress.
Values in parenthesis indicate percent proportion of the trait in AWD relative to that under CWL.
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要約
低温ストレスは、種子稔性の低下を通してイネの収量を大きく低下させる。低温の程度や継続期間は年や季節
によって異なるため、最も気温が低下する時期を回避して開花させうる新技術の開発が求められる。一般に、乾
燥ストレスは出穂を遅延させる傾向があり、また根が浅く張る浅根性品種は軽微な乾燥ストレスに敏感に反応す
ることが知られている。そこで本研究では、軽微な乾燥ストレス下で出穂期の遅延を示す突然変異体（T6-16）
を選抜し、アフリカで有望視されているネリカ品種の反復親の1つであるWAB56-104と交配することで、本
変異遺伝子の有用性を評価した。F2個体群のうち、変異体型個体の出穂日は軽微な乾燥ストレス下で平均11
日間遅延する傾向を示した。特に3つのF2個体では、11 〜 17日間出穂日が遅延したが収量の低下は見られな
かった。これらの結果は、浅根性に関わる遺伝子座の利用と軽微な灌水量の制限により、収量の減少を伴うこ
となく、最も厳しい低温期を回避して開花させうる新技術確立の可能性を示している。


